The perimeter of a rectangle is 48m. The width of the rectangle is 2 more than half the length. Find the length and the width.

Respuesta :

Answer:

l = 14  2/3

w = 9  1/3

Step-by-step explanation:

Let l = length

w = 2+ 1/2l

We know the perimeter is 48 and is given by

P = 2(l+w)

48 = 2(l + 2 +1/2l)

Distribute

48 = 2l+4+l

Combine like terms

48 = 3l +4

Subtract 4 from each side

48-4 = 3l+4-4

44= 3l

Divide each side by 3

44/3 = 3l/3

44/3 =l

14  2/3 =l

Now we need to find w

w = 2 + 1/2 l

   =2 + 1/2(44/3)

   = 2 +44/6

   =12/6 +44/6

   =56/6

   =9  1/3

The Length of the rectangle is  14[tex]\frac{2}{3}[/tex] m and width  9[tex]\frac{1}{3}[/tex] m.

Step-by-step explanation:

Given,

Perimeter of the rectangle = 48 m

The width of the rectangle is 2 more than half the length.

To find the length and width of the rectangle.

Formula

Perimeter of the rectangle of length l and width b is = 2(l+b)

Let,

Length = l

Width = [tex]\frac{l}{2} +2[/tex] [ given]

Now,

According to the problem

2(l+[tex]\frac{l}{2} +2[/tex] ) = 48

or, [tex]l+\frac{l}{2} +2[/tex] = 24

or, [tex]\frac{3l}{2}[/tex] = 24-2

or, [tex]\frac{3l}{2}[/tex] = 22

or, l = [tex]\frac{22X2}{3}[/tex] = [tex]\frac{44}{3}[/tex] = 14[tex]\frac{2}{3}[/tex]

And width = [tex]\frac{44}{3X2}+2[/tex] = [tex]\frac{28}{3}[/tex] = 9[tex]\frac{1}{3}[/tex]

Hence,

Length = 14[tex]\frac{2}{3}[/tex] m and width = 9[tex]\frac{1}{3}[/tex] m