Answer:
Ratio = [tex]\frac{64}{27}[/tex]
Step-by-step explanation:
Volume of Sphere is given by the formula:
[tex]V=\frac{4}{3} \pi r^3[/tex]
Where
V is the volume
and
r is the radius
Original Volume, given r = 3, would be:
[tex]V=\frac{4}{3} \pi r^3\\V=\frac{4}{3} \pi (3)^3\\V=\frac{4}{3}\pi (27)\\V=36\pi[/tex]
Increased snowball volume:
Radius increased 0.25 per second, he spent 4 seconds, so radius increase:
0.25 * 4 = 1 cm
New radius = 3 + 1 = 4 cm
New Volume would be:
[tex]V=\frac{4}{3} \pi r^3\\V=\frac{4}{3} \pi (4)^3\\V=\frac{4}{3}\pi(64)\\V=\frac{256\pi}{3}[/tex]
Ratio of New Volume to Original would be:
[tex]Ratio=\frac{\frac{256\pi}{3}}{36\pi}=\frac{256\pi}{3}*\frac{1}{36\pi}=\frac{64}{27}[/tex]
This is the ratio for current volume to original volume.