Coordinates of center and radius of circle is [tex](h,k)=(13.40,-2.60)\\r=10[/tex] .
Step-by-step explanation:
Here we have , The equation of a circle is given below.
(2 – 13.4)2 + (y + 2.6)2 = 100 or , [tex](x -13.4)^2 + (y + 2.6)^2 = 100[/tex]
We know that , Equation of circle is given by :
⇒ [tex](x-h)^+(y-k)^2 =r^2[/tex] ...........(1)
where (h,k) are the coordinates of center of circle and r is the radius of circle . Let's simplify given equation of circle in question ;
⇒ [tex](x -13.4)^2 + (y + 2.6)^2 = 100[/tex]
⇒ [tex](x -(13.4))^2 + (y - (-2.6))^2 = 100[/tex]
⇒ [tex](x -(13.4))^2 + (y - (-2.6))^2 = 10^2[/tex]
Comparing this equation to (1) we get :
[tex](h,k)=(13.40,-2.60)\\r=10[/tex]
Therefore , Coordinates of center and radius of circle is [tex](h,k)=(13.40,-2.60)\\r=10[/tex] .