Answer:
[tex]a. \ \ \ P_l=954 \ ft\\\\b.\ A_s=944 \ ft^2[/tex]
Step-by-step explanation:
a. Given that the area's are in the ratios 16:81.
-Area is two-dimensional while perimeter is one-dimensional
=>The perimeter's of the two polygons will vary in a ratio equal to the square root of their area's ratio:
[tex]P_s:P_b=\sqrt{A_s}:\sqrt{A_b}\\\\=\sqrt{16}:\sqrt{81}\\\\=4:9[/tex]
We use the perimeter ratio to find the perimeter of the larger polygon:
[tex]\frac{P_s}{P_l}=\frac{4}{9}=\frac{424}{P_l}\\\\P_l=(424\times 9)/4\\\\=954\ ft[/tex]
Hence, the perimeter of the larger polygon is 954 ft
b -Given the area of the larger polygon is 4779 ft2, the smaller polygon can be determined using the area ratio 16:81
[tex]\frac{A_s}{A_l}=\frac{A_s}{4779}=\frac{16}{81}\\\\A_s=\frac{4779\times 16}{81}\\\\=944[/tex]
Hence, area of the smaller polygon is [tex]944 \ ft^2[/tex]