Write an exponential function in the form y=ab^xy=ab
x
that goes through points (0, 20)(0,20) and (3, 4320)(3,4320).

Respuesta :

Answer:

y=20(6)^x

Step-by-step explanation:

hello :

the graph passes through the point (0,20) : when x=0  and  y=20  :

20= ab^0    so a=20 because : b^0 = 1

the graph passes through the point (3,4320) : when x=3.  and  y=4320  : 4320= ab^3  but : a=20   so : 4320 = 20b^3

so : b^3 = 4320/20 = 216...... 216 =  6^3

b^3 = 6^3

b=6

the function is : y=20(6)^x

The function is y=20(6)^x.

An exponential function is defined by the formula f(x) = ax, where the input variable x occurs as an exponent. The exponential curve depends on the exponential function and it depends on the value of the x

How to write an exponential function in the form y=ab^xy = abx

that goes through points (0, 20)(0,20) and (3, 4320)(3,4320).

The graph passes through the point (0,20) : when x=0  and  y=20  :

20= ab^0    so a=20 because : b^0 = 1

the graph passes through the point (3,4320) : when x=3.  and  y=4320  : 4320= ab^3  but : a=20   so : 4320 = 20b^3

so : b^3 = 4320/20 = 216

216 =  6^3

b^3 = 6^3

b=6

Thus, the function is : y=20(6)^x .

Learn more about exponential functions on : https://brainly.com/question/19742435

#SPJ2

ACCESS MORE
EDU ACCESS
Universidad de Mexico