Respuesta :
Answer:
90% confidence interval for the proportion p of adult residents who are parents in this county is [0.433 , 0.527].
Step-by-step explanation:
We are given that we wish to estimate what percent of adult residents in a certain county are parents. Out of 300 adult residents sampled, 144 had kids.
Firstly, the pivotal quantity for 90% confidence interval for the proportion p of adult residents who are parents in this county is given by;
P.Q. = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = proportion of adults residents who are parents in this county in a sample of 300 adults = [tex]\frac{144}{300}[/tex] = 48%
n = sample of adults residents = 300
p = population proportion of adults
Here for constructing 90% confidence interval we have used One-sample z proportion statistics.
So, 90% confidence interval for the population proportion, p is ;
P(-1.6449 < N(0,1) < 1.6449) = 0.90 {As the critical value of z at 5%
significance level are -1.6449 & 1.6449}
P(-1.6449 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 1.6449) = 0.90
P( [tex]-1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.90
P( [tex]\hat p-1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.90
90% confidence interval for p = [ [tex]\hat p-1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex], [tex]\hat p+1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ]
= [ [tex]0.48-1.6449 \times {\sqrt{\frac{0.48(1-0.48)}{300} } }[/tex] , [tex]0.48+1.6449 \times {\sqrt{\frac{0.48(1-0.48)}{300} } }[/tex] ]
= [0.433 , 0.527]
Therefore, 90% confidence interval for the proportion p of adult residents who are parents in this county is [0.433 , 0.527].