Answer:
The de broglie relation says
[tex]mv = \dfrac{h}{\lambda }[/tex]
putting in [tex]v = 1250ms^{-2}[/tex], [tex]\lambda = 828*10^{-24}nm[/tex], and [tex]h =6.63*10^{-34}[/tex] we get:
[tex]m = \dfrac{6.63*10^{-34}}{(828*10^{-24}*10^{-9}m) 1250ms^{-2}}[/tex]
[tex]\boxed{m=6.41*10^{-7}kg = 64\mu g}[/tex]
The kinetic energy of the particle is
[tex]\dfrac{1}{2}mv^2= \dfrac{1}{2}(6.41*10^{-7})(1250)^2\\\\\\[/tex]
[tex]= 0.5007J[/tex]
And the linear momentum of the particle is
[tex]mv = 6.41*10^{-7}(1250)\\\\= 8.01*10^{-4}kgms^{-2}[/tex]
The wavelength of the particle is very small, in fact it is [tex]\approx 10^{15}[/tex] times smaller than the diameter of the proton; therefore, for all intents and purposes, the behavior of the particle is macroscopic.