Respuesta :
Answer:
W=5.92*10^13 N
Explanation:
The mass is
[tex]F=Mg\\M=\frac{F}{g}=\frac{685N}{9.8\frac{m}{s^2}}=69.89kg[/tex]
Hence, the force in the nuetron star is
[tex]F=G\frac{MM_n}{r^2}=(6.67*10^{-11}N\frac{m^2}{kg})\frac{(69.8kg)(1.99*10^{30}kg)}{(12.5*10^3m)^2}=5.92*10^{13}N[/tex]
Thus, it will be a great weigth!!
Hope this helps
Answer:
[tex] W = 5.94 \cdot 10^{15} N [/tex]
Explanation:
To calculate the weight on the surface of a neutron star we can use the following equation:
[tex] W = m*g [/tex]
Where:
W: is the weight of the person
m: is the mass of the person
g: is the gravity of the neutron star
Hence, first we need to find m and g. The mass is equal to:
[tex]m = \frac{W}{g} = \frac{685 N}{9.81 m/s^{2}} = 69.83 kg[/tex]
Now, the gravity of the neutron star can be found using the followig equation:
[tex]F = \frac{G*m*M}{r^{2}} = m*g \rightarrow g = \frac{G*M}{r^{2}}[/tex]
Where:
G: is the gravitational constant = 6.67x10⁻¹¹ m³ kg⁻¹ s⁻²
M: is the mass of the neutron star = 1.99x10³⁰ kg
r : is the distance between the person and the surface of the neutron star = 25/2 = 12.5 km
[tex] g = \frac{6.67 \cdot 10^{-11} m^{3}kg^{-1}s^{-2}*1.99 \cdot 10^{30} kg}{(12.5 \cdot 10^{3} m)^{2}} = 8.50 \cdot 10^{13} m/s^{2} [/tex]
Now, we can find the weight on the surface of the neutron star:
[tex]W = m*g = 69.83 kg * 8.50 \cdot 10^{13} m/s^{2} = 5.94 \cdot 10^{15} N[/tex]
I hope it helps you!