Respuesta :
Answer:
[tex] 136cm^2[/tex]
Step-by-step explanation:
We are given:
x = 80cm
y = 61cm
z = 29cm
Let's say,
f(x,y,z) = 2xy + 2xz + 2yz.
Therefore,
(x,y,z) = (80, 61, 29)
and Δx = Δy = Δz = 0.2
Making use of partial derivatives, we have:
[tex]f_x = 2y + 2z [/tex]
[tex] f_y = 2x + 2z [/tex]
[tex] f_z = 2x + 2y [/tex]
Therefore, to solve fx, fy and fz we have:
f_x (80, 61, 29)
= (2*61)+(2*29) =180
f_y (80, 61, 29)
= (2*80)+(2*29) = 218
f_z (80, 61, 29)
= (2*80)+(2*61)=282
dz at (80, 61, 29) =
dz = 180dx + 218dy + 282dz.
Δz = 180Δx + 218Δy + 282Δz
=(180 + 218 + 282) * 0.2
= 680 * 0.2
= 136
Therefore, the max error is 136sq.cm
The maximum error in calculating surface area is [tex]136 cm^{2}[/tex]
Surface area :
The maximum error in calculating surface area is given as,
[tex]\Delta A = 4d(x+y+z)[/tex]
where x , y and z are dimensions of rectangular box.
Given that, [tex]x=80,y=61,z=29,d=0.2[/tex]
Substitute values in above relation.
[tex]\Delta A = 4*0.2(80+61+29)\\\\\Delta A = 0.8*170\\\\\Delta A = 136cm^{2}[/tex]
The maximum error in calculating surface area is [tex]136 cm^{2}[/tex]
Learn more about the maximum error here:
https://brainly.com/question/6650225
Otras preguntas
