Answer:
The optimal size of production run is 4656
Explanation:
Annual Demand (D) = 12,200
Daily demand (d) = Annual Demand / Number of days
Daily demand (d) = 12,200 / 300
Daily demand (d) = 40.67
Production rate per day (p) — 95
Setup cost (S) = 51
Annual holding cost (H) = 0.1
Part a)
[tex]Optimal Order Quantity (Q) = \sqrt{\frac{2*D*S}{H} } * \sqrt{\frac{p}{p-d} }[/tex]
[tex]Optimal Order Quantity (Q) = \sqrt{\frac{2*12200*51}{0.1} } * \sqrt{\frac{95}{95-40.67} }[/tex]
[tex]Optimal Order Quantity (Q) = \sqrt{12444000} * \sqrt{1.74536}[/tex]
Optimal Order Quantity (Q) = 3527.6 × 1.32
Optimal Order Quantity (Q)= 4,656.43
Optimal Order Quantity (Q)= 4,656
Therefore the optimal size of production run is 4656