Respuesta :
Answer:
[tex] z =\frac{0.39-0.43}{0.0226}= -1.766[/tex]
And we can find this probability using the complement rule and the normal standard table or excel and we got:
[tex] P(\hat p >0.39) =P(Z>-1.766) =1-P(Z<-1.766) = 1-0.0387=0.9613[/tex]
Step-by-step explanation:
For this case we can define the population proportion p as "true proportion of surgeons" and we can check if we can use the normal approximation for the distribution of [tex]\hat p[/tex]
1) [tex] np =478*0.43 =205.54 >10[/tex]
2) [tex] n(1-p) =478*(1-0.43) =272.46 >10[/tex]
3) Random sample: We assume that the data comes from a random sample
Since we can use the normal approximation the distribution for [tex]\hat p[/tex] is given by:
[tex] \hat p sim N( p, \sqrt{\frac{p (1-p)}{n}}) [/tex]
With the following parameters:
[tex]\mu_{\hat p} = 0.43[/tex]
[tex]\sigma_{\hat p} =\sqrt{\frac{0.43*(1-0.43)}{478}}= 0.0226[/tex]
And we want to find this probability:
[tex] P(\hat p >0.39)[/tex]
And we can use the z score formula given by:
[tex] z = \frac{\hat p -\mu_{\hat p}}{\sigma_{\hat p}}[/tex]
And if we calculate the z score for [tex]\hat p = 0.39[/tex] we got:
[tex] z =\frac{0.39-0.43}{0.0226}= -1.766[/tex]
And we can find this probability using the complement rule and the normal standard table or excel and we got:
[tex] P(\hat p >0.39) =P(Z>-1.766) =1-P(Z<-1.766) = 1-0.0387=0.9613[/tex]