Answer:
The wavelength of the light is [tex]0.04 \times 10^{-5}[/tex] m
Explanation:
Given :
Distance between two slit [tex]d = 0.040 \times 10^{-3}[/tex] m
Distance of screen [tex]D = 2[/tex] m
Distance between central fringe to 5th bright fringe, [tex]x = 10 \times 10^{-2}[/tex] m
From the formula of interference,
[tex]d \sin \theta = n \lambda[/tex]
Where [tex]\sin \theta[/tex] ≅ [tex]\theta[/tex] we put [tex]\theta = \frac{x}{D}[/tex]
[tex]\frac{dx}{D} = n\lambda[/tex]
Where [tex]n =[/tex] 5 ( given in question )
Now we have to find wavelength of the light,
[tex]\lambda = \frac{dx}{nD}[/tex]
[tex]\lambda = \frac{0.040 \times 10^{-3} \times 10 \times 10^{-2} }{5 \times 2}[/tex]
[tex]\lambda = 0.04 \times 10^{-5}[/tex] m
Therefore, the wavelength of the light is [tex]0.04 \times 10^{-5}[/tex] m