Answer:
The value of new value of angular speed of merry go round.[tex]\omega_{2}[/tex] = 0.96 [tex]\frac{rad}{sec}[/tex]
Explanation:
Given data
r = 1.4 m
Moment of inertia [tex]I_{1}[/tex] = 265 kg - [tex]m^{2}[/tex]
[tex]N_{1} =[/tex] 11 RPM
[tex]\omega_{1} = \frac{2 \pi N}{60}[/tex]
[tex]\omega_{1} = \frac{2 \pi (11)}{60}[/tex]
[tex]\omega_{1}[/tex] = 1.15 [tex]\frac{rad}{sec}[/tex]
From conservation of momentum principal
[tex]I_{1} \omega_{1} = I_{2} \omega_{2}[/tex] ------- (1)
[tex]I_{2} = m r^{2} + 265[/tex]
[tex]I_{2} = 27 (1.4)^{2} + 265[/tex]
[tex]I_{2} = 317.92 \ kg m^{2}[/tex]
Put all the values in equation (1)
265 × 1.15 = 317.92 × [tex]\omega_{2}[/tex]
[tex]\omega_{2}[/tex] = 0.96 [tex]\frac{rad}{sec}[/tex]
This is the value of new value of angular speed of merry go round.