A playground merry-go-round of radius R = 1.40 m has a moment of inertia I = 265 kg · m2 and is rotating at 11.0 rev/min about a frictionless vertical axle. Facing the axle, a 27.0-kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?

Respuesta :

Answer:

The value of new value of angular speed of merry go round.[tex]\omega_{2}[/tex] = 0.96 [tex]\frac{rad}{sec}[/tex]

Explanation:

Given data

r = 1.4 m

Moment of inertia [tex]I_{1}[/tex] = 265 kg - [tex]m^{2}[/tex]

[tex]N_{1} =[/tex] 11 RPM

[tex]\omega_{1} = \frac{2 \pi N}{60}[/tex]

[tex]\omega_{1} = \frac{2 \pi (11)}{60}[/tex]

[tex]\omega_{1}[/tex] = 1.15 [tex]\frac{rad}{sec}[/tex]

From conservation of momentum principal

[tex]I_{1} \omega_{1} = I_{2} \omega_{2}[/tex] ------- (1)

[tex]I_{2} = m r^{2} + 265[/tex]

[tex]I_{2} = 27 (1.4)^{2} + 265[/tex]

[tex]I_{2} = 317.92 \ kg m^{2}[/tex]

Put all the values in equation  (1)

265 × 1.15 = 317.92 × [tex]\omega_{2}[/tex]

[tex]\omega_{2}[/tex] = 0.96 [tex]\frac{rad}{sec}[/tex]

This is the value of new value of angular speed of merry go round.

RELAXING NOICE
Relax