Answer:
[tex]x(t) = (6\,m)\cdot \cos \left[\left(2\,\frac{rad}{s} \right)\cdot t-0.5\pi \right][/tex]
Explanation:
This problem describes a system experimenting a simple harmonic motion. The spring constant is determined by the Hooke's Law:
[tex]k = \frac{F}{\Delta x}[/tex]
[tex]k = \frac{880\,N}{4\,m}[/tex]
[tex]k = 220\,\frac{N}{m}[/tex]
The angular frequency is:
[tex]\omega = \sqrt{\frac{k}{m} }[/tex]
[tex]\omega = \sqrt{\frac{220\,\frac{N}{m} }{55\,kg} }[/tex]
[tex]\omega = 2\,\frac{rad}{s}[/tex]
The position and velocity functions for the motion of the mass-spring system is:
[tex]x(t) = A\cdot \cos(\omega\cdot t +\phi)[/tex]
[tex]v(t) = -\omega \cdot A\cdot \sin (\omega\cdot t + \phi)[/tex]
The initial condition for the system are:
[tex]x(0) = 0[/tex], [tex]v(0) = 12\,\frac{m}{s}[/tex]
Equation at initial time are:
[tex]0 = A\cdot \cos \phi[/tex]
[tex]12 = -2 \cdot A \cdot \sin \phi[/tex]
By dividing the first equation by the second one:
[tex]\cot \phi = 0[/tex]
Which corresponds to [tex]\phi = -0.5\pi[/tex]
The amplitude is:
[tex]A = -\frac{6}{\sin (-0.5\pi)}[/tex]
[tex]A = 6\,m[/tex]
The equation of motion is:
[tex]x(t) = (6\,m)\cdot \cos \left[\left(2\,\frac{rad}{s} \right)\cdot t-0.5\pi \right][/tex]