Respuesta :
Answer: (1) The temperature of the water after 20 minutes is 82.8°
(2) The temperature of the water will be 80° after 26.7 min
Step-by-step explanation: Please see the attachments below


After 26.7 minutes, temperature of the the hot tub will be 80° .
Newton's cooling law:
- Newton's law of cooling is described by the expression,
[tex]T(t)=T_s+(T_0-T_s)e^{kt}[/tex]
Here, [tex]T(t)=[/tex] Temperature of the object after 't' minutes
[tex]T_s=[/tex] Temperature of surrounding
[tex]T_0=[/tex] Initial temperature of the object
[tex]k=[/tex] Constant for the given object
[tex]t=[/tex] Time of cooling
Given in the question,
- Temperature of the hot tub [tex](T_0)=104^\circ[/tex]
- Room temperature [tex](T_s)=75^\circ[/tex]
- [tex]T(t)=90^\circ[/tex]
- [tex]t=10[/tex] minutes
Substitute these values in the expression,
[tex]90=75+(104-75)e^{10k}[/tex]
[tex]15=29.e^{10k}[/tex]
[tex]\text{ln}(\frac{15}{29})=\text{ln}(e^{10k})[/tex]
[tex]-0.65925=10k[/tex]
[tex]k=-0.065925[/tex]
Therefore, expression for the final temperature will be,
[tex]T(t)=75+(104-75)e^{-0.065925t}[/tex]
[tex]T(t)=75+(29)e^{-0.065925t}[/tex]
Now substitute [tex]T(t)=80^\circ[/tex] to find the time of cooling in which temperature of the tub goes down to 80°C.
[tex]80=75+(29)e^{-0.065925t}[/tex]
[tex]5=(29)e^{-0.065925t}[/tex]
[tex]e^{0.065925t}=\frac{29}{5}[/tex]
[tex]\text{ln}(5.8)=0.065925t[\text{ln(e)}][/tex]
[tex]t=26.7\text{ minutes}[/tex]
Hence, temperature of the the hot tub will be 80° after 26.7 minutes.
Learn more about the Newton's law of cooling here,
https://brainly.com/question/10541873?referrer=searchResults