The temperature in a hot tub is 104° and the room temperature is 75°. The water cools to 90° in 10 minutes. What is the water temperature after 20 minutes? (Round your answer to one decimal place.) ° After how many minutes will the temperature be 80°? (Round your answer to one decimal place.) min

Respuesta :

Answer: (1) The temperature of the water after 20 minutes is 82.8°

(2) The temperature of the water will be 80° after 26.7 min

Step-by-step explanation: Please see the attachments below

Ver imagen Abdulazeez10
Ver imagen Abdulazeez10

   After 26.7 minutes, temperature of the the hot tub will be 80° .

Newton's cooling law:

  • Newton's law of cooling is described by the expression,

        [tex]T(t)=T_s+(T_0-T_s)e^{kt}[/tex]

        Here, [tex]T(t)=[/tex] Temperature of the object after 't' minutes

        [tex]T_s=[/tex] Temperature of surrounding

        [tex]T_0=[/tex] Initial temperature of the object

        [tex]k=[/tex] Constant for the given object

        [tex]t=[/tex] Time of cooling

Given in the question,

  • Temperature of the hot tub [tex](T_0)=104^\circ[/tex]
  • Room temperature [tex](T_s)=75^\circ[/tex]
  • [tex]T(t)=90^\circ[/tex]
  • [tex]t=10[/tex] minutes

Substitute these values in the expression,

[tex]90=75+(104-75)e^{10k}[/tex]

[tex]15=29.e^{10k}[/tex]

[tex]\text{ln}(\frac{15}{29})=\text{ln}(e^{10k})[/tex]

[tex]-0.65925=10k[/tex]

[tex]k=-0.065925[/tex]

Therefore, expression for the final temperature will be,

[tex]T(t)=75+(104-75)e^{-0.065925t}[/tex]

[tex]T(t)=75+(29)e^{-0.065925t}[/tex]

  Now substitute [tex]T(t)=80^\circ[/tex] to find the time of cooling in which temperature of the tub goes down to 80°C.

[tex]80=75+(29)e^{-0.065925t}[/tex]

[tex]5=(29)e^{-0.065925t}[/tex]

[tex]e^{0.065925t}=\frac{29}{5}[/tex]

[tex]\text{ln}(5.8)=0.065925t[\text{ln(e)}][/tex]

[tex]t=26.7\text{ minutes}[/tex]

      Hence, temperature of the the hot tub will be 80° after 26.7 minutes.

Learn more about the Newton's law of cooling here,

https://brainly.com/question/10541873?referrer=searchResults

ACCESS MORE
EDU ACCESS
Universidad de Mexico