Answer:
(a) h = 1.27 Re
(b) h = 1.86 Re
Explanation:
Let M is the mass of earth and Re is the radius of earth.
initial velocity of projection, v = 0.462 ve
where, ve is the escape velocity of an object on earth surface.
(a)
The value of escape velocity is
[tex]v_{e}=\sqrt{\frac{2GM}{R_{e}}}[/tex]
So, [tex]v=0.462\times \sqrt{\frac{2GM}{R_{e}}}[/tex] .... (1)
By using conservation of energy
(Kinetic energy + potential energy ) at the surface of earth = Potential energy at the height h.
where, h is the maximum height upto which the projectile reach
K.E at surface P.E at surface = P.E at the top
[tex]\frac{1}{2}mv^{2}-\frac{GMm}{R_{e}}=-\frac{GMm}{h}[/tex]
By equation (1), substituting the value of v
[tex]\frac{1}{2}\times 0.462^{2}\times \frac{2GM}{R_{e}}-\frac{GM}{R_{e}}=-\frac{GM}{h}[/tex]
[tex]\frac{1}{2}\times 0.462^{2}\times \frac{2}{R_{e}}-\frac{1}{R_{e}}=-\frac{1}{h}[/tex]
h = 1.27 Re
(b)
initial kinetic energy = 0.462 times the kinetic energy required to escape
[tex]\frac{1}{2}mv^{2}=0.462\times \frac{1}{2}mv_{e}^{2}[/tex]
[tex]\frac{1}{2}mv^{2}=0.462\times \frac{1}{2}m\times \frac{2GM}{R_{e}}[/tex]
So, again by using the conservation of energy
Kinetic energy at the surface + Potential energy at the surface = Potential energy at the top
[tex]0.462\times \frac{1}{2}m\times \frac{2GM}{R_{e}}-\frac{GMm}{R_{e}}=-\frac{GMm}{h}[/tex]
[tex]0.462\times \frac{1}{R_{e}}-\frac{1}{R_{e}}=-\frac{1}{h}[/tex]
h = 1.86 Re