Answer with Explanation:
We are given that
Electric field,E=90.5V/m
We have to find the magnetic field strength,the energy density and the power flower per unit area.
Magnetic field strength=[tex]B=\frac{E}{c}[/tex]
Where [tex]c=3\times 10^8 m/s[/tex]
Using the formula
[tex]B=\frac{90.5}{3\times 10^8}=30.17\times 10^{-8} T[/tex]
Energy per unit volume,[tex]u=\frac{1}{2}\epsilon_0 E^2+\frac{1}{2}\epsilon_0 B^2c^2[/tex]
Where [tex]\epsilon_0=8.85\times 10^{-12}[/tex]
Using the formula
[tex]u=\frac{1}{2}\times 8.85\times 10^{-12}\times (90.5)^2+\frac{1}{2}\times 8.85\times 10^{-12}(30.17\times 10^{-8})^2(3\times 10^8)^2[/tex]
[tex]u=7.25\times 10^{-8}J/m^3[/tex]
Power flow per unit area=[tex]S=\frac{BE}{\mu_0}[/tex]
Where [tex]\mu_0=4\pi\times 10^{-7}[/tex]
[tex]S=\frac{90.5\time 30.17\times 10^{-8}}{4\pi\times 10^{-7}}=21.7W/m^2[/tex]