A uranium nucleus (mass 238 units) at rest decays into two particles, a helium nucleus (mass 4.0 units) and a thorium nucleus (mass 234 units). If the speed of the helium nucleus is 6.0  105 m/s, what is the speed of the thorium nucleus?

Respuesta :

Answer:

[tex]0.103\times 10^5 m/s[/tex]

Explanation:

We are given that

Mass of uranium,[tex]M=238 units[/tex]

Initial velocity,u=0

Mass of helium nucleus,[tex]m_1=4 units[/tex]

Mass of thorium,[tex]m_2=234 units[/tex]

Speed of helium nucleus,[tex]v_1=6\times 10^5 m/s[/tex]

We have to find the speed of the thorium nucleus.

According to law  of conservation of momentum

Initial momentum=Final momentum

[tex]0=m_1v_1+m_2v_2[/tex]

[tex]m_2v_2=-m_1v_1[/tex]

[tex]v_2=\frac{-m_1v_1}{m_2}[/tex]

[tex]v_2=\frac{-4\times 6\times 10^5}{234}=0.103\times 10^5 m/s[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico