Respuesta :
Answer:
I = 69.3 μA
Explanation:
Current through the straight wire, I = 3.45 A
Number of turns, N = 5 turns
Diameter of the coil, D = 1.25 cm
Resistance of the coil, [tex]R = 3.25 \mu ohms[/tex]
Distance of the wire from the center of the coil, d = 20 cm = 0.2 m
The magnetic field, B₁, when the wire is at a distance, d, from the center of the coil.
[tex]B_{1} = \frac{\mu_{0}I }{2\pi d}[/tex]
[tex]B_{1} = \frac{4\pi* 10^{-7} *3.45 }{2\pi *0.2}\\B_{1} =0.00000345 T[/tex]
Magnetic field B₂ when the wire is at a distance, 2d from the center of the coil
[tex]B_{2} = \frac{\mu_{0}I }{2\pi(2d)) } \\B_{2} = \frac{\mu_{0}I }{4\pi d } \\[/tex]
[tex]B_{2} = \frac{4\pi* 10^{-7} *3.45 }{2\pi *2*0.2}\\B_{2} = 0.000001725 T[/tex]
Change in the magnetic field, ΔB = B₂ - B₁ = 0.00001725 - 0.0000345
ΔB = -0.000001725
Induced current, [tex]I = \frac{E}{R}[/tex]
E = -N (Δ∅)/Δt
Δ∅ = A ΔB
Area, A = πr²
diameter, d = 0.0125 m
Radius, r = 0.00625 m
A = π* 0.00625²
A = 0.0001227 m²
Δ∅ = -0.000001725 * 0.0001227
Δ∅ = -211.6575 * 10⁻¹²
E = -N (Δ∅)/Δt
[tex]E = -5\frac{-211.6575 * 10^{-12} }{4.70} \\E = 225.17 * 10^{-12} V[/tex]
Resistance, R = 3.25 μ ohms = 3.25 * 10⁻⁶ ohms
I = E/R
[tex]I = \frac{225.17 * 10^{-12} }{3.25 * 10^{-6} }[/tex]
I = 0.0000693 A
I = 69 .3 * 10⁻⁶A
I = 69.3 μA
