Respuesta :
Answer: The pH of the solution after addition of barium hydroxide is 3.78
Explanation:
To calculate the number of moles for given molarity, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}\times 1000}{\text{Volume of solution (in mL)}}[/tex] .......(1)
- For nitrous acid:
Molarity of nitrous acid = 0.465 M
Volume of solution = 26.3 mL
Putting values in equation 1, we get:
[tex]0.465M=\frac{\text{Moles of nitrous acid}\times 1000}{26.3mL}\\\\\text{Moles of nitrous acid}=\frac{0.465\times 26.3}{1000}=0.0122mol[/tex]
- For barium hydroxide:
Molarity of barium hydroxide = 0.461 M
Volume of solution = 19.9 mL
Putting values in equation 1, we get:
[tex]0.461M=\frac{\text{Moles of barium hydroxide}\times 1000}{19.9mL}\\\\\text{Moles of barium hydroxide}=\frac{0.461\times 19.9}{1000}=0.0092mol[/tex]
The chemical reaction for nitrous acid and barium hydroxide follows the equation:
[tex]2HNO_2+Ba(OH)_2\rightarrow Ba(NO_2)_2+2H_2O[/tex]
Initial: 0.0122 0.0092
Final: 0.003 - 0.0092
Volume of solution = 26.3+ 19.9 = 46.2 mL = 0.0462 L (Conversion factor: 1 L = 1000 mL)
To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
[tex]pH=pK_a+\log(\frac{[salt]}{[acid]})[/tex]
[tex]pH=pK_a+\log(\frac{[NO_2^-]}{[HNO_2]}[/tex]
We are given:
[tex]pK_a[/tex] = negative logarithm of acid dissociation constant of nitrous acid = 3.29
[tex][NO_2^-]=\frac{0.0092}{0.0462}[/tex]
[tex][HNO_2]=\frac{0.003}{0.0462}[/tex]
pH = ?
Putting values in above equation, we get:
[tex]pH=3.29+\log(\frac{0.0092/0.0462}{0.003/0.0462})\\\\pH=3.78[/tex]
Hence, the pH of the solution after addition of barium hydroxide is 3.78