Answer:
a) the velocity of the implant immediately after impact is 20 m/s
b) the average resistance of the implant is 40000 N
Explanation:
a) The impulse momentum is:
mv1 + ∑Imp(1---->2) = mv2
According the exercise:
v1=0
∑Imp(1---->2) = F(t2-t1)
m=0.2 kg
Replacing:
[tex]0+F(t_{2} -t_{1} )=0.2v_{2}[/tex]
if F=2 kN and t2-t1=2x10^-3 s. Replacing
[tex]0+2x10^{-3} (2x10^{-3} )=0.2v_{2} \\v_{2} =\frac{4}{0.2} =20m/s[/tex]
b) Work and energy in the system is:
T2 - U(2----->3) = T3
where T2 and T3 are the kinetic energy and U(2----->3) is the work.
[tex]T_{2} =\frac{1}{2} mv_{2}^{2} \\T_{3} =0\\U_{2---3} =-F_{res} x[/tex]
Replacing:
[tex]\frac{1}{2} *0.2*20^{2} -F_{res} *0.001=0\\F_{res} =40000N[/tex]