Respuesta :
Answer:
8264.15w, therefore the heat transfer increase because the characteristic length increased.
Explanation:
Please look at the attachments


Answer:
The rate of heat transfer is 8264.2 W
Explanation:
The heat transfer is:
Q = hAs(Ts-T∞)
A sphere:
[tex]L=\frac{\frac{4}{3}\pi r^{3} }{4\pi r^{2} } =r/3\\A_{s} =4\pi r^{2}[/tex]
if the area is considered, h will be constant and we have
[tex]\frac{Q_{2} }{Q_{1} } =\frac{L_{2} }{L_{1} } (\frac{T_{2}-T_{\alpha } }{T_{s1}-T_{\alpha } } )\\\frac{Q_{2} }{1500} =\frac{0.3^{2} }{0.15^{2} } (\frac{400-35}{300-35} )\\Q_{2} =8264.2W[/tex]