Respuesta :
Answer: The final concentration of iodide anion in the solution is 0.282 M
Explanation:
To calculate the number of moles for given molarity, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}\times 1000}{\text{Volume of solution (in mL)}}[/tex] .....(1)
- For copper (II) iodide:
Molarity of copper (II) iodide solution = 0.272 M
Volume of solution = 49.5 mL
Putting values in equation 1, we get:
[tex]0.272M=\frac{\text{Moles of copper (II) iodide}\times 1000}{49.5}\\\\\text{Moles of copper (II) iodide}=\frac{0.272\times 49.5}{1000}=0.00135mol[/tex]
1 mole of copper (II) iodide [tex](CuI_2)[/tex] produces 1 mole of copper ions [tex](Cu^{2+})[/tex] and 2 moles of iodide ions [tex](I^{-})[/tex]
Moles of iodide ions = (2 × 0.00135) = 0.0027 moles
- For magnesium iodide:
Molarity of magnesium iodide solution = 0.674 M
Volume of solution = 10.6 mL
Putting values in equation 1, we get:
[tex]0.674M=\frac{\text{Moles of magnesium iodide}\times 1000}{10.6}\\\\\text{Moles of magnesium iodide}=\frac{0.674\times 10.6}{1000}=0.00714mol[/tex]
1 mole of magnesium iodide [tex](MgI_2)[/tex] produces 1 mole of magnesium ions [tex](Mg^{2+})[/tex] and 2 moles of iodide ions [tex](I^{-})[/tex]
Moles of iodide ions = (2 × 0.0071) = 0.01428 moles
Now, calculating the concentration of iodide anion in the solution by using equation 1, we get:
Total moles of iodide ions = [0.0027 + 0.01428] = 0.01698 moles
Total volume of the solution = [49.5 + 10.6] = 60.1 mL
Putting values in equation 1, we get:
[tex]\text{Molarity of }I^{-}\text{ ions}=\frac{0.01698\times 1000}{60.1}\\\\\text{Molarity of }I^{-}\text{ ions}=0.282M[/tex]
Hence, the final concentration of iodide anion in the solution is 0.282 M.
