Answer : The pH of the solution is 3.5
Explanation :
First we have to calculate the moles of [tex]HCOOH[/tex], [tex]HCOONa[/tex] and [tex]NaOH[/tex].
[tex]\text{Moles of }HCOOH=\text{Concentration of }HCOOH\times \text{Volume of solution in L}[/tex]
[tex]\text{Moles of }HCOOH=0.250M\times 0.500L=0.125mol[/tex]
and,
[tex]\text{Moles of }HCOONa=\text{Concentration of }HCOONa\times \text{Volume of solution in L}[/tex]
[tex]\text{Moles of }HCOONa=0.100M\times 0.500L=0.05mol[/tex]
and,
[tex]\text{Moles of }NaOH=\text{Concentration of }NaOH\times \text{Volume of solution in L}[/tex]
[tex]\text{Moles of }NaOH=6.00M\times 0.010L=0.06mol[/tex]
The equilibrium chemical reaction is:
[tex]HCOOH+OH^-\rightleftharpoons HCOO^-+H_2O[/tex]
Initial moles 0.125 0.06 0.05
At eqm. (0.125-0.06) 0 (0.05+0.06)
= 0.185 = 0.11
Given:
[tex]K_a=1.8\times 10^{-4}[/tex]
Now we have to calculate the value of [tex]pK_a[/tex].
The expression used for the calculation of [tex]pK_a[/tex] is,
[tex]pK_a=-\log (K_a)[/tex]
Now put the value of [tex]K_a[/tex] in this expression, we get:
[tex]pK_a=-\log (1.8\times 10^{-4})[/tex]
[tex]pK_a=4-\log (1.8)[/tex]
[tex]pK_a=3.7[/tex]
Now we have to calculate the pH of buffer.
Using Henderson Hesselbach equation :
[tex]pH=pK_a+\log \frac{[Salt]}{[Acid]}[/tex]
[tex]pH=pK_a+\log \frac{[HCOONa]}{[HCOOH]}[/tex]
[tex]pH=pK_a+\log \frac{[\frac{\text{Moles of HCOONa}}{\text{Volume of solution}}]}{[\frac{\text{Moles of HCOOH}}{\text{Volume of solution}}]}[/tex]
As the volume of solution are same. So,
[tex]pH=pK_a+\log \frac{\text{Moles of HCOONa}}{\text{Moles of HCOOH}}[/tex]
Now put all the given values in this expression, we get:
[tex]pH=3.7+\log (\frac{0.11}{0.185})[/tex]
[tex]pH=3.5[/tex]
Therefore, the pH of the solution is 3.5