Calculate the pH of a solution that contains 0.250 M formic acid, HCOOH (Ka =1.8 x 10-4 ), and 0.100M sodium formate, HCOONa after the addition of 10.0 mL of 6.00M NaOH to the original buffered solution volume of 500.0 mL.

Respuesta :

Answer : The pH of the solution is 3.5

Explanation :

First we have to calculate the moles of [tex]HCOOH[/tex], [tex]HCOONa[/tex] and [tex]NaOH[/tex].

[tex]\text{Moles of }HCOOH=\text{Concentration of }HCOOH\times \text{Volume of solution in L}[/tex]

[tex]\text{Moles of }HCOOH=0.250M\times 0.500L=0.125mol[/tex]

and,

[tex]\text{Moles of }HCOONa=\text{Concentration of }HCOONa\times \text{Volume of solution in L}[/tex]

[tex]\text{Moles of }HCOONa=0.100M\times 0.500L=0.05mol[/tex]

and,

[tex]\text{Moles of }NaOH=\text{Concentration of }NaOH\times \text{Volume of solution in L}[/tex]

[tex]\text{Moles of }NaOH=6.00M\times 0.010L=0.06mol[/tex]

The equilibrium chemical reaction is:

                         [tex]HCOOH+OH^-\rightleftharpoons HCOO^-+H_2O[/tex]

Initial moles      0.125          0.06      0.05

At eqm.          (0.125-0.06)     0      (0.05+0.06)

                        = 0.185                        = 0.11

Given:

[tex]K_a=1.8\times 10^{-4}[/tex]

Now we have to calculate the value of [tex]pK_a[/tex].

The expression used for the calculation of [tex]pK_a[/tex] is,

[tex]pK_a=-\log (K_a)[/tex]

Now put the value of [tex]K_a[/tex] in this expression, we get:

[tex]pK_a=-\log (1.8\times 10^{-4})[/tex]

[tex]pK_a=4-\log (1.8)[/tex]

[tex]pK_a=3.7[/tex]

Now we have to calculate the pH of buffer.

Using Henderson Hesselbach equation :

[tex]pH=pK_a+\log \frac{[Salt]}{[Acid]}[/tex]

[tex]pH=pK_a+\log \frac{[HCOONa]}{[HCOOH]}[/tex]

[tex]pH=pK_a+\log \frac{[\frac{\text{Moles of HCOONa}}{\text{Volume of solution}}]}{[\frac{\text{Moles of HCOOH}}{\text{Volume of solution}}]}[/tex]

As the volume of solution are same. So,

[tex]pH=pK_a+\log \frac{\text{Moles of HCOONa}}{\text{Moles of HCOOH}}[/tex]

Now put all the given values in this expression, we get:

[tex]pH=3.7+\log (\frac{0.11}{0.185})[/tex]

[tex]pH=3.5[/tex]

Therefore, the pH of the solution is 3.5

ACCESS MORE
EDU ACCESS
Universidad de Mexico