Answer:
[tex]k(75.0^0C)=2.65 x 10^4 s^{-1}[/tex]
Explanation:
Hello,
In this case, based on the given information, the Arrhenius equation is used to predict k at 75.0 °C as:
[tex]\frac{k(75.0^0C)}{k(25.0^0C)} =exp[-\frac{\Delta Ea}{R}(\frac{1}{T_{k(75.0^0C)}}-\frac{1}{T_{k(25.0^0C)}} )][/tex]
Thus, the rate constant results:
[tex]k(75.0^0C)=k(25.0^0C)exp[-\frac{\Delta Ea}{R}(\frac{1}{T_{k(75.0^0C)}}-\frac{1}{T_{k(25.0^0C)}} )]\\\\k(75.0^0C)=1.35x10^2s^{-1}exp[-\frac{91000J/mol}{8.314J/(mol*K)}(\frac{1}{348.15K}-\frac{1}{298.15K} )]\\\\k(75.0^0C)=2.65 x 10^4 s^{-1}[/tex]
Best regards.