Respuesta :
The required values are,
[tex]x=\frac{1}{A} \\z=\frac{1}{C} \\y=-\frac{B}{AC}\\[/tex]
Equivalent matrix:
Matrix equivalence is an equivalence relation on the space of
For two rectangular matrices of the same size, their equivalence can also be characterized by the following conditions The matrices can be transformed into one another by a combination of elementary row and column operations.
Let the matrix be,
[tex]\left[\begin{array}{ccc}x&0\\y&z\end{array}\right] \left[\begin{array}{ccc}A&0\\B&C\end{array}\right] =\left[\begin{array}{ccc}1&0\\0&1\end{array}\right] \\\left[\begin{array}{ccc}x\times A+0\times B&0\times +0\times C\\y\times A+B\times Z&y\times 0+z\times c\end{array}\right] =\left[\begin{array}{ccc}1&0\\0&1\end{array}\right] \\\\x\times A=1\\x=\frac{1}{A} \\z\times c=1\\z=\frac{1}{C} \\y\times A+B\times z=0\\\\y=-\frac{B}{AC}\\[/tex]
Learn more about the topic equivalent matrix:
https://brainly.com/question/18828043