Answer:
Concentration of A: [tex]\frac{C_{A} }{C_{Ao} } =e^{-k_{1}t }[/tex]
Concentration of B: [tex]\frac{C_{B} }{C_{Ao} } =\frac{k_{1} }{k_{2}-k_{1} } (e^{-k_{1}t } -e^{-k_{2}t } )[/tex]
Concentration of C: [tex]\frac{C_{C} }{C_{Ao} } =1+\frac{k_{1} }{k_{2}-k_{1} } e^{-k_{2}t } -\frac{k_{2} }{k_{2}-k_{1} } e^{-k_{1} t}[/tex]
the image shows the graphs of the three concentrations
Explanation:
We have the reaction:
A ------->k1--------->B------------->k2--------->C
Each reaction:
[tex]r_{A} =-k_{1} C_{A} \\r_{B} =k_{1} C_{A} -k_{2} C_{B} \\r_{C} =k_{2} C_{C}[/tex]
Where Cn is the concentration of each specie (A,B,C)
The mass balance for A:
[tex]-\frac{dC_{A} }{dt} =-r_{A} \\-\frac{dC_{A} }{dt}=k_{1} C_{A} \\-\int\limits^y_x {\frac{dC_{A} }{dt} } \,=k_{1} t\\\frac{C_{A} }{C_{Ao} } =e^{-k_{1}t }[/tex]
Where x=CAo and y=CA
The mass balance for B:
[tex]-\frac{dC_{B} }{dt} =-r_{B} \\-\frac{dC_{B} }{dt}=k_{2} C_{B} -k_{1} C_{A} \\\frac{dC_{B} }{dt}+k_{2} C_{B}=k_{1} C_{A}\\\frac{C_{B} }{C_{Ao} } =\frac{k_{1} }{k_{2}-k_{1} } (e^{-k_{1}t }-ex^{-k_{2}t } )[/tex]
The mass balance for C:
[tex]\frac{C_{C} }{C_{Ao} } =1-\frac{C_{A} }{C_{Ao} } -\frac{C_{B} }{C_{Ao} } \\\frac{C_{C} }{C_{Ao} }=1+\frac{k_{1} }{k_{2}-k_{1} } e^{-k_{2} t}-\frac{k_{2} }{k_{2}-k_{1} } e^{-k_{1}t }[/tex]
The maximum concentration of C is:
[tex]C_{Cmax} =C_{Ao} (\frac{k_{2} }{k_{1} } )^{\frac{k_{2} }{k_{2}-k_{1} }} =1.6(\frac{0.01}{0.4} )^{\frac{0.01}{0.01-0.4} } =1.76mol/dm^{3}[/tex]
and the maximum time is:
[tex]t_{max} =\frac{ln\frac{k_{2} }{k_{1} } }{k_{2}-k_{1} } =\frac{ln\frac{0.01}{0.4} }{0.01-0.4} =9.4 h[/tex]