g Problem 2. (1.4 points) Suppose A is an n × n matrix, such that A 2 + 3A − 4I = 0 where I and 0 are the n × n identity and zero matrix respectively. What can you say about the invertibility of matrix A?

Respuesta :

Answer:

The correct answer is [tex]A^{-1}[/tex] = [tex]\frac{1}{4}[/tex] A + [tex]\frac{3}{4 }[/tex] I

Step-by-step explanation:

Since A is an n × n invertible non singular matrix, [tex]A^{-1}[/tex] exists.

Given equation is [tex]A^{2}[/tex] + 3A -4I = O where I and O are the n × n identity and zero matrix respectively.

[tex]A^{2}[/tex] + 3A -4I = O

⇒ [tex]A^{-1}[/tex] ( [tex]A^{2}[/tex] + 3A -4I ) = [tex]A^{-1}[/tex] × O

⇒ [tex]A^{-1}[/tex] AA + 3 [tex]A^{-1}[/tex]A - 4[tex]A^{-1}[/tex]I = O

⇒ A + 3I - 4[tex]A^{-1}[/tex] = O

⇒ A + 3I = 4 [tex]A^{-1}[/tex]

[tex]A^{-1}[/tex] = [tex]\frac{1}{4}[/tex] A + [tex]\frac{3}{4 }[/tex] I

Thus the value of  [tex]A^{-1}[/tex] can be given by the above equation.

ACCESS MORE
EDU ACCESS