Suppose that ff is a differentiable function on the real line, we have −2≤f′(x)≤4−2≤f′(x)≤4 for all real numbers xx and f(2)=4f(2)=4. The largest possible value for f(7)f(7) is . The smallest possible value for f(7)f(7) is . The largest possible value for f(−2)f(−2) is . The smallest possible value for f(−2)f(−2) is

Respuesta :

Answer:

(a)-6 and 24

(b)-12 and 12.

Step-by-step explanation:

Using the mean value theorem,

Suppose that f is a function which is continuous on a closed interval [a, b] and differentiable on an open interval (a, b), then there

exists a number c in (a, b) so that

[TeX] f^{'}(c)= \frac{f(b)-f(a)}{b-a}[/TeX]

for every closed interval [a,b].

−2≤f′(x)≤4 and f(2)=4

First, we determine the largest and smallest possible value for f(7).

In the Interval [2,7],

[TeX] f^{'}(x)= \frac{f(7)-f(2)}{7-2}[/TeX]

Since −2≤f′(x)≤4

[TeX] -2$\leq$\frac{f(7)-f(2)}{5}$\leq$4[/TeX]

Recall that: f(2)=4

[TeX] -2$\leq$ \frac{f(7)-4}{5}$\leq$4[/TeX]

[TeX] -2X5$\leq$ f(7)-4$\leq$4X5[/TeX]

[TeX] -10+4$\leq$ f(7)-4+4$\leq$20+4[/TeX]

[TeX] -6$\leq$ f(7)$\leq$24[/TeX]

The greatest and least value are 24 and -6 respectively.

Similarly for f(-2)

In the Interval [-2,2],

[TeX] f^{'}(x)= \frac{f(2)-f(-2)}{2-(-2)}[/TeX]

Since −2≤f′(x)≤4

[TeX] -2$\leq$ \frac{f(2)-f(-2)}{4}$\leq$4[/TeX]

Recall that: f(2)=4

[TeX] -2$\leq$ \frac{4-f(-2)}{4}$\leq$4[/TeX]

[TeX] -2X4$\leq$ -f(-2)+4$\leq$4X4[/TeX]

[TeX] -8-4$\leq$ -f(-2)-4+4$\leq$16-4[/TeX]

[TeX] -12$\leq$ -f(-2)$\leq$12[/TeX]

Dividing all through by negative

[TeX] -12$\leq$ f(-2)$\leq$12[/TeX]

The greatest and least value are 12 and -12 respectively.

The question is an illustration of mean value theorem.

  • The least and the greatest values of f(7) are -6 and 24, respectively.
  • The least and the greatest values of f(-2) are -12 and 12, respectively.

The given parameters are:

[tex]\mathbf{-2 \le f'(x) \le 4}[/tex]

[tex]\mathbf{f(2) = 4}[/tex]

The mean value theorem states that:

[tex]\mathbf{f^{'}(c)= \frac{f(b)-f(a)}{b-a}}[/tex]

Substitute 7 and 2 for b and a, respectively

[tex]\mathbf{f^{'}(c)= \frac{f(7)-f(2)}{7-2}}[/tex]

[tex]\mathbf{f^{'}(c)= \frac{f(7)-f(2)}{5}}[/tex]

Multiply both sides by 5

[tex]\mathbf{5f^{'}(c)= f(7)-f(2)}[/tex]

Substitute 4 for f(2)

[tex]\mathbf{5f^{'}(c)= f(7)-4}[/tex]

Add 4 to both sides

[tex]\mathbf{4 + 5f^{'}(c)= f(7)}[/tex]

So, we have:

[tex]\mathbf{4 + 5 \times -2 \le f(7) \le 4 + 5 \times 4}[/tex]

[tex]\mathbf{-6 \le f(7) \le 24}[/tex]

Hence, the least and the greatest values of f(7) are -6 and 24, respectively.

Recall that:

[tex]\mathbf{f^{'}(c)= \frac{f(b)-f(a)}{b-a}}[/tex]

Substitute -2 and 2 for b and a, respectively

[tex]\mathbf{f^{'}(c)= \frac{f(-2)-f(2)}{-2-2}}[/tex]

[tex]\mathbf{f^{'}(c)= \frac{f(-2)-f(2)}{-4}}[/tex]

Multiply both sides by -4

[tex]\mathbf{-4f^{'}(c)= f(-2)-f(2)}[/tex]

Substitute 4 for f(2)

[tex]\mathbf{-4f^{'}(c)= f(-2)-4}[/tex]

Add 4 to both sides

[tex]\mathbf{4-4f^{'}(c)= f(-2)}[/tex]

So, we have:

[tex]\mathbf{4 - 4 \times -2 \le f(-2) \le 4 - 4 \times 4}[/tex]

[tex]\mathbf{12 \le f(-2) \le -12}[/tex]

Hence, the least and the greatest values of f(-2) are -12 and 12, respectively.

Read more about mean value theorem at:

https://brainly.com/question/3957181

ACCESS MORE
EDU ACCESS
Universidad de Mexico