Respuesta :

Answer:

[tex]a_{n}[/tex] = 2[tex](-4)^{n-1}[/tex]

Step-by-step explanation:

The n th term of a geometric sequence is

[tex]a_{n}[/tex] = a[tex](r)^{n-1}[/tex]

where a is the first term and r the common ratio

Given

[tex]a_{2}[/tex] = - 8, then ar = - 8 → (1)

Given

[tex]a_{5}[/tex] = 512, then a[tex]r^{4}[/tex] = 512 → (2)

Divide (2) by (1)

[tex]\frac{ar^4}{ar}[/tex] = [tex]\frac{512}{-8}[/tex], thus

r³ =- 64 ( take the cube root of both sides )

r = [tex]\sqrt[3]{-64}[/tex] = - 4

Substitute r = - 4 into (1)

a(- 4) = - 8

- 4a = - 8 ( divide both sides by - 4 )

a = 2

Thus

[tex]a_{n}[/tex] = 2[tex](-4)^{n-1}[/tex]

RELAXING NOICE
Relax