Answer:
Poisson distribution
Step-by-step explanation:
Poisson distribution:
A discrete random variable X having the enumerable set {0,1,2,....} as the spectrum, is said to have Poisson distribution with parameter [tex]\mu[/tex] (>0), if the p.m.f given by
[tex]P(X=x)=\frac{e^{-\mu}\mu^x}{x!}[/tex]
[tex]=\frac{e^{-\lambda t}(\lambda t)^x}{x!}[/tex]
[tex]\lambda[/tex] = Average number of customer per minute= 1.6
t= time = 10 minutes
[tex]\lambda t[/tex]= (1.6×10)=16
x= No customer arriving=0
[tex]P(X=0)=\frac{e^{-16}(16)^0}{0!}[/tex]
=[tex]1.13\times 10^{-7}[/tex]
The probability that no customer arriving at a checkout counter for 10 minutes is [tex]1.13\times 10^{-7}[/tex].