Answer:
Option D.) 0.09 I₀
Explanation:
The intensity, I, of a polarized light after passing through a polarizing filter is given by [tex]I = I_{0} cos^{2} \theta[/tex]
[tex]I_{0} =[/tex] Original Intensity
[tex]\theta =[/tex] Angle between the direction of polarization and the axis of filter
After passing through the first polarizer, the initial intensity, [tex]I_{o}[/tex] is halved, i.e [tex]I_{1} = \frac{I_{0} }{2}[/tex]
After passing through the second polarizer, the angle of polarization, θ = 30⁰
[tex]I_{2} = I_{1} cos^{2} \theta[/tex]
[tex]I_{2} = \frac{I_{0} }{2} cos^{2} 30\\I_{2} =\frac{3}{8} I_{0} \\I_{2} = 0.375 I_{0}[/tex]
After passing through the third polarizer, the angle of polarization, θ = 90⁰-30⁰ = 60⁰
[tex]I_{3} = I_{2} cos^{2} \theta[/tex]
[tex]I_{3} = 0.375I_{0} cos^{2} 60[/tex]
[tex]I_{2} =0.09 I_{0}[/tex]