Respuesta :
Answer:
a) The detailed explanation for the question being asked in section a is shown below
b) [tex]SO_3^{2-}_{(aq)} \ \ \ + H_2O_{l} ------> HSO_3^-_{(aq)} + OH^-[/tex]
Equilibrium constant expression [tex]K_c = \frac{[HSO_3^-][OH^-]}{]SO_3^{2-}]}[/tex]
c) pH = 10.45
Explanation:
a.
If we look at [tex]SO_4^{2-}[/tex], we will realize that it is a conjugate base of a strong acid [tex](H_2SO_4)[/tex]. However, the more stronger the acid, the weaker its conjugate base.
On the other hand [tex]SO_3^{2-}[/tex] is a conjugate base of a weak acid [tex]H_2SO_3[/tex] and the more weaker the acid, the stronger the basicity of its conjugate base.
b. The chemical equation for the reaction between [tex]SO_3^{2-}[/tex] and water can be expressed as follows:
[tex]SO_3^{2-}_{(aq)} \ \ \ + H_2O_{l} ------> HSO_3^-_{(aq)} + OH^-[/tex]
Equilibrium constant [tex]K_c = \frac{[HSO_3^-][OH^-]}{]SO_3^{2-}]}[/tex]
c.
The ICE Table is then constructed as follows:
[tex]SO_3^{2-}_{(aq)} \ \ \ + H_2O_{l} ------> HSO_3^-_{(aq)} + OH^-[/tex]
Initial (M) 0.500 0 0
Change (M) - x + x + x
Equilibrium (M) (0.500 - x) x x
[tex]K_c = \frac{[HSO_3^-][OH^-]}{]SO_3^{2-}]}[/tex]
[tex]K_c = \frac{K \omega }{Ka_2}[/tex]
where [tex]K \omega[/tex] is the ionic product of water = [tex]10^{-14}[/tex]
[tex]K_c = \frac{10^{-14}}{6.60*10^{-8}}[/tex]
[tex]K_c = 1.52*10^{-7}[/tex]
However;
[tex]1.52*10^{-7} = \frac{[x][x]}{[0.500 - x]}[/tex]
[tex]1.52*10^{-7} = \frac{[x]^2}{[0.500]}[/tex] since [tex]K_c[/tex] value is so small; then (0500 -x ) ≅ 0.500
[tex]x^2 = 1.52*10^{-7}*0.5[/tex]
[tex]x^2 = 7.6*10^{-8}[/tex]
[tex]x = \sqrt{ 1.52*10^{-7}*0.5[/tex]
[tex]x = 2.7568*10^{-4}[/tex]
[tex]x = 0.00028[/tex]
[tex][OH^-] = x = 0.00028[/tex]
[tex]pOH = -log \ [OH^-][/tex]
[tex]pOH = - log \ [0.00028][/tex]
[tex]pOH = 3.55[/tex]
pH + pOH = 14
pH + 3.55 = 14
pH = 14 - 3.55
pH = 10.45