Respuesta :
Answer : The value of [tex]\Delta G^o[/tex] and K is, -180 kJ/mol and [tex]3.6\times 10^{31}[/tex]
Explanation :
The balanced cell reaction will be,
[tex]Pb(s)+2Ag^+(aq)\rightarrow Pb^{2+}(aq)+2Ag(g)[/tex]
The half-cell reactions are:
Oxidation reaction (anode) : [tex]Pb(s)\rightarrow Pb^{2+}(aq)+2e^-[/tex]
Reduction reaction (cathode) : [tex]2Ag^+(aq)+2e^-\rightarrow 2Ag(g)[/tex]
Relationship between standard Gibbs free energy and standard electrode potential follows:
[tex]\Delta G^o=-nFE^o_{cell}[/tex]
where,
[tex]\Delta G^o[/tex] = standard Gibbs free energy
F = Faraday constant = 96500 C
n = number of electrons in oxidation-reduction reaction = 2
[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = 0.93 V
Now put all the given values in the above formula, we get:
[tex]\Delta G^o=-2\times 96500\times 0.93[/tex]
[tex]\Delta G^o=-179490J/mol=-179.49kJ/mol\approx -180kJ/mol[/tex]
Now we have to calculate the value of 'K'.
[tex]\Delta G^o=-RT\ln K[/tex]
where,
[tex]\Delta G_^o[/tex] = standard Gibbs free energy = -180 kJ/mol
R = gas constant = [tex]8.314\times 10^{-3}kJ/mole.K[/tex]
T = temperature = 298 K
K = equilibrium constant = ?
Now put all the given values in the above formula 1, we get:
[tex]-180kJ/mol=-(8.314\times 10^{-3}kJ/mole.K)\times (298K)\times \ln K[/tex]
[tex]K=3.6\times 10^{31}[/tex]
Therefore, the value of [tex]\Delta G^o[/tex] and K is, -180 kJ/mol and [tex]3.6\times 10^{31}[/tex]
The change in free energy is -1.79 * 10^4 J while the rate constant is 2.6 * 10^31.
What is ΔG°?
The symbol ΔG° stands for the standard free energy change of the reaction. The equation of the reaction is; Pb(s) + 2Ag+ (aq) ⟶ Pb2+(aq) + 2Ag(s) . We can see that two moles of electrons were transferred in the process.
E°cell = 0.0592/n log K
When E°cell = 0.93 V
0.93 = 0.0592/2 log K
31.42 = log K
K = Antilog(31.42)
K = 2.6 * 10^31
Now;
ΔG° = -nFE°cell
ΔG° = -(2 * 96500 * 0.93)
ΔG° = -1.79 * 10^4 J
Learn more about ΔG° :https://brainly.com/question/9743981