A recent study found that electrons that have energies between 3.45 eV and 19.9 eV can cause breaks in a DNA molecule even though they do not ionize the molecule. If a single photon were to transfer its energy to a single electron, what range of light wavelengths could cause DNA breaks?minimum wavelength?

maximum wavelength?

Respuesta :

Answer:

The Minimum wavelength is  [tex]\lambda_{min}= 382.2nm[/tex]

The Maximum wavelength is [tex]\lambda_{max}= 624.2nm[/tex]

Explanation:

From the question we are told that  

              The energy range is  [tex]E_r = 3.25eV \ and \ 19.9eV[/tex]

   Considering [tex]E = 19.9eV[/tex]

When a single photon is transferred to to an electron the energy obtained can be calculated as follows

              [tex]E = 19.9eV = 19.9 *1.6 *10^{-19}J[/tex]

This energy is mathematically represented as

                    [tex]E = \frac{hc}{\lambda_{max}}[/tex]

Here h is the Planck's constant with value of  [tex]h= 6.625*10^{-34}J\cdot s[/tex]

        c is the speed of light with value of  [tex]c = 3*10^8 m/s[/tex]

Substituting values and making [tex]\lambda[/tex] the subject of the formula

                       [tex]\lambda_{max} = \frac{hc}{E}[/tex]

                         [tex]= \frac{6.625*10^{-34} * 3.0*10^{8}}{19.9*1.6*10^{-19}}[/tex]

                         [tex]\lambda_{max}= 624.2nm[/tex]

  Considering [tex]E = 3.25eV[/tex]

When a single photon is transferred to to an electron the energy obtained can be calculated as follows

              [tex]E = 19.9eV = 3.25 *1.6 *10^{-19}J[/tex]

This energy is mathematically represented as

                    [tex]E = \frac{hc}{\lambda_{min}}[/tex]

Substituting values and making [tex]\lambda[/tex] the subject of the formula

                       [tex]\lambda_{min} = \frac{hc}{E}[/tex]

                           [tex]= \frac{6.625*10^{-34} * 3.0*10^{8}}{3.25*1.6*10^{-19}}[/tex]

                           [tex]\lambda_{min}= 382.2nm[/tex]

ACCESS MORE