Answer:
449.08 lb
313.53 lb.ft
Explanation:
A free body diagram of the walking beam is shown in the first attached file below.
Applying moment equilibrium about point B.
[tex]\sum M_B = 0[/tex]
[tex]F_{AD} \ sin \ 70^0 \ (5) \ - \ 60 (6)\ - \ 250\ (6+1) = \ 0[/tex]
[tex]F_{AD} \ 0.9397(5) \ - 360 \ - 1750 = \ 0[/tex]
[tex]F_{AD} = \frac{360\ + \ 1750}{4.6985}[/tex]
[tex]F_{AD} = \frac{2110}{4.6985}[/tex]
[tex]F_{AD} = 449.08 \ lb[/tex]
A free body diagram of the counterweight is shown in the second part of the diagram
Now, Applying moment equilibrium about point E..
[tex]\sum \ _ {MB} = 0[/tex] ;
[tex]- M + F_{AD}(3) \ - \ 200 \ cos 20 \ (3 + 2.5)= 0[/tex]
[tex]- M + 449.08(3) \ - \ 200 \ cos 20 \ (3 + 2.5)= 0[/tex]
[tex]- M + 1347.24- 200 (0.9397)(5.5) = 0[/tex]
[tex]- M + 1347.24 - 200(5.168309414) = 0[/tex]
[tex]- M + 1347.24 - 1033.661883 = 0[/tex]
[tex]- M = - 1347.24 + 1033 . 661883[/tex]
[tex]M = 1347.24 - 1033.661883[/tex]
[tex]M = 313.578117[/tex]
[tex]M = 313.58 \ lb \ .ft[/tex]