Consider the matrix shown below:

Answer:
A)
[tex]A^{-1}={\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]}[/tex]
Step-by-step explanation:
Given the following matrix [tex]\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right][/tex], its inverse is calculated using the formula:
[tex]\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right] ^{-1}=\frac{1}{det\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right]}\left[\begin{array}{ccc}d&-b\\-c&a\\\end{array}\right][/tex]
#We can therefore calculate the inverse of our matrix as follows:
[tex]\frac{1}{det\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right]}\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]\\\\\\\\{det\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right]}=1\\\\\\\\\therefore =\frac{1}{1}{\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]}\\\\\\\\={\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]}[/tex]
Hence, the inverse of the matrix is
[tex]A^{-1}={\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]}[/tex]