The top and bottom margins of a poster are each $3$ cm and the side margins are each $2$ cm. If the area of printed material on the poster is fixed at $96$ cm$^2$, find the dimensions of the poster with the smallest area.

Respuesta :

Answer:

Therefore the dimension of the poster is 12 cm by 8 cm.

Step-by-step explanation:

Let the length of the poster be x and the width be y.

Given that the area of the poster is 96 cm².

∴xy =96

[tex]\Rightarrow y= \frac{96}{x}[/tex]

The sides margins each are 2 cm and the top and bottom margins of the poster are each 3 cm.

The length of printing space is =(x- 2.3) cm

                                                   = (x-6) cm

The width of the printing space is =(y-2.2) cm

                                                         =( y-4 )cm

The area of the printing space is A=(x-6)(y-4) cm²

∴A=(x-6)(y-4)  

[tex]\Rightarrow A=(x-6)(\frac{96}{x}-4)[/tex]    [ Putting [tex]y= \frac{96}{x}[/tex]  ]

[tex]\Rightarrow A=120-\frac{576}{x}-4x[/tex]

Differentiating with respect to x

[tex]A'= \frac{576}{x^2}-4[/tex]

Again differentiating with respect to x

[tex]A''=-\frac{1152}{x^3}[/tex]

To find the minimum area, we set A'=0

[tex]\therefore \frac{576}{x^2}-4=0[/tex]

[tex]\Rightarrow \frac{576}{x^2}=4[/tex]

[tex]\Rightarrow x^2=\frac{576}{4}[/tex]

[tex]\Rightarrow x^2 =144[/tex]

[tex]\Rightarrow x=\pm 12[/tex]

Dimension can't be negative.

Therefore x=12

If x=12, the value of A''>0,then at x=12, the area of the poster will be minimum.

If x=12, the value of A''<0,then at x=12, the area of the poster will be minimum.

[tex]\therefore A''|_{x=12}=-\frac{1152}{12^3}<0[/tex]

Therefore at x= 12 cm the area of the poster will be maximum.

The width of the poster is [tex]y=\frac{96}{12}[/tex] = 8 cm

Therefore the dimension of the poster is 12 cm by 8 cm.

The dimension of the smallest area of the poster is 8 cm by 12 cm

Let the dimensions of the poster be x and y.

So, the area is:

[tex]\mathbf{Area =xy}[/tex]

The area is given as 96 cm^2.

So, we have:

[tex]\mathbf{xy = 96}[/tex]

The print area is represented as:

[tex]\mathbf{A = (x - 4)(y - 6)}[/tex]

Make x the subject in [tex]\mathbf{xy = 96}[/tex]

[tex]\mathbf{x = \frac{96}{y}}[/tex]

Substitute 96/y for x in [tex]\mathbf{A = (x - 4)(y - 6)}[/tex]

[tex]\mathbf{A = (\frac{96}{y} - 4)(y - 6)}[/tex]

Express as:

[tex]\mathbf{A = (96y^{-1} - 4)(y - 6)}[/tex]

Expand

[tex]\mathbf{A = 96 -576y^{-1}- 4y + 24}[/tex]

Differentiate

[tex]\mathbf{A' = 576y^{-2}- 4}[/tex]

Set to 0

[tex]\mathbf{576y^{-2}- 4 = 0}[/tex]

Add 4 to both sides

[tex]\mathbf{576y^{-2}= 4}[/tex]

Multiply both sides by y^2

[tex]\mathbf{576= 4y^2}[/tex]

Divide both sides by 4

[tex]\mathbf{144= y^2}[/tex]

Take square roots

[tex]\mathbf{12= y}[/tex]

Rewrite as:

[tex]\mathbf{y = 12}[/tex]

Recall that:

[tex]\mathbf{x = \frac{96}{y}}[/tex]

So, we have:

[tex]\mathbf{x = \frac{96}{12}}[/tex]

[tex]\mathbf{x = 8}[/tex]

Hence, the dimension of the smallest area of the poster is 8 cm by 12 cm

Read more about areas at:

https://brainly.com/question/11906003

ACCESS MORE
EDU ACCESS