Respuesta :
Answer:
Therefore the dimension of the poster is 12 cm by 8 cm.
Step-by-step explanation:
Let the length of the poster be x and the width be y.
Given that the area of the poster is 96 cm².
∴xy =96
[tex]\Rightarrow y= \frac{96}{x}[/tex]
The sides margins each are 2 cm and the top and bottom margins of the poster are each 3 cm.
The length of printing space is =(x- 2.3) cm
= (x-6) cm
The width of the printing space is =(y-2.2) cm
=( y-4 )cm
The area of the printing space is A=(x-6)(y-4) cm²
∴A=(x-6)(y-4)
[tex]\Rightarrow A=(x-6)(\frac{96}{x}-4)[/tex] [ Putting [tex]y= \frac{96}{x}[/tex] ]
[tex]\Rightarrow A=120-\frac{576}{x}-4x[/tex]
Differentiating with respect to x
[tex]A'= \frac{576}{x^2}-4[/tex]
Again differentiating with respect to x
[tex]A''=-\frac{1152}{x^3}[/tex]
To find the minimum area, we set A'=0
[tex]\therefore \frac{576}{x^2}-4=0[/tex]
[tex]\Rightarrow \frac{576}{x^2}=4[/tex]
[tex]\Rightarrow x^2=\frac{576}{4}[/tex]
[tex]\Rightarrow x^2 =144[/tex]
[tex]\Rightarrow x=\pm 12[/tex]
Dimension can't be negative.
Therefore x=12
If x=12, the value of A''>0,then at x=12, the area of the poster will be minimum.
If x=12, the value of A''<0,then at x=12, the area of the poster will be minimum.
[tex]\therefore A''|_{x=12}=-\frac{1152}{12^3}<0[/tex]
Therefore at x= 12 cm the area of the poster will be maximum.
The width of the poster is [tex]y=\frac{96}{12}[/tex] = 8 cm
Therefore the dimension of the poster is 12 cm by 8 cm.
The dimension of the smallest area of the poster is 8 cm by 12 cm
Let the dimensions of the poster be x and y.
So, the area is:
[tex]\mathbf{Area =xy}[/tex]
The area is given as 96 cm^2.
So, we have:
[tex]\mathbf{xy = 96}[/tex]
The print area is represented as:
[tex]\mathbf{A = (x - 4)(y - 6)}[/tex]
Make x the subject in [tex]\mathbf{xy = 96}[/tex]
[tex]\mathbf{x = \frac{96}{y}}[/tex]
Substitute 96/y for x in [tex]\mathbf{A = (x - 4)(y - 6)}[/tex]
[tex]\mathbf{A = (\frac{96}{y} - 4)(y - 6)}[/tex]
Express as:
[tex]\mathbf{A = (96y^{-1} - 4)(y - 6)}[/tex]
Expand
[tex]\mathbf{A = 96 -576y^{-1}- 4y + 24}[/tex]
Differentiate
[tex]\mathbf{A' = 576y^{-2}- 4}[/tex]
Set to 0
[tex]\mathbf{576y^{-2}- 4 = 0}[/tex]
Add 4 to both sides
[tex]\mathbf{576y^{-2}= 4}[/tex]
Multiply both sides by y^2
[tex]\mathbf{576= 4y^2}[/tex]
Divide both sides by 4
[tex]\mathbf{144= y^2}[/tex]
Take square roots
[tex]\mathbf{12= y}[/tex]
Rewrite as:
[tex]\mathbf{y = 12}[/tex]
Recall that:
[tex]\mathbf{x = \frac{96}{y}}[/tex]
So, we have:
[tex]\mathbf{x = \frac{96}{12}}[/tex]
[tex]\mathbf{x = 8}[/tex]
Hence, the dimension of the smallest area of the poster is 8 cm by 12 cm
Read more about areas at:
https://brainly.com/question/11906003