The rate of rotation of the disk is gradually increased. The coefficient of static friction between the coin and the disk is 0.50. Determine the linear speed of the coin when it just begins to slip.

Respuesta :

Question is not complete and the missing part is;

A coin of mass 0.0050 kg is placed on a horizontal disk at a distance of 0.14 m from the center. The disk rotates at a constant rate in a counterclockwise direction. The coin does not slip, and the time it takes for the coin to make a complete revolution is 1.5 s.

Answer:

0.828 m/s

Explanation:

Resolving vertically, we have;

Fn and Fg act vertically. Thus,

Fn - Fg = 0 - - - - eq(1)

Resolving horizontally, we have;

Ff = ma - - - - eq(2)

Now, Fn and Fg are both mg and both will cancel out in eq 1.

Leaving us with eq 2.

So, Ff = ma

Now, Frictional force: Ff = μmg where μ is coefficient of friction.

Also, a = v²/r

Where v is linear speed or velocity

Thus,

μmg = mv²/r

m will cancel out,

Thus, μg = v²/r

Making v the subject;

rμg = v²

v = √rμg

Plugging in the relevant values,

v = √0.14 x 0.5 x 9.8

v = √0.686

v = 0.828 m/s

ACCESS MORE
EDU ACCESS
Universidad de Mexico