Respuesta :

Given:

Polynomial [tex]x^2-3x+5[/tex]

To find:

The values of x.

Solution:

[tex]x^2-3x+5=0[/tex]

Quadratic equation formula:

[tex]$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}[/tex]

Here [tex]a=1, b=-3, c=5[/tex].

Substitute the values in the formula, we get

[tex]$x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4 \cdot 1 \cdot 5}}{2 \cdot 1}[/tex]

[tex]$x=\frac{3 \pm \sqrt{9-20}}{2}[/tex]

[tex]$x=\frac{3 \pm \sqrt{-11}}{2}[/tex]

[tex]$x=\frac{3 - \sqrt{-11}}{2} \ \text{and} \ x=\frac{3 + \sqrt{-11}}{2}[/tex]

Option E and option F are the roots of the polynomial.

The values of x are [tex]x=\frac{3 - \sqrt{-11}}{2} \ \text{and} \ x=\frac{3 + \sqrt{-11}}{2}[/tex].

ACCESS MORE
EDU ACCESS
Universidad de Mexico