which two values of x are roots of the polynomial below? x^2-3x+5

Given:
Polynomial [tex]x^2-3x+5[/tex]
To find:
The values of x.
Solution:
[tex]x^2-3x+5=0[/tex]
Quadratic equation formula:
[tex]$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}[/tex]
Here [tex]a=1, b=-3, c=5[/tex].
Substitute the values in the formula, we get
[tex]$x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4 \cdot 1 \cdot 5}}{2 \cdot 1}[/tex]
[tex]$x=\frac{3 \pm \sqrt{9-20}}{2}[/tex]
[tex]$x=\frac{3 \pm \sqrt{-11}}{2}[/tex]
[tex]$x=\frac{3 - \sqrt{-11}}{2} \ \text{and} \ x=\frac{3 + \sqrt{-11}}{2}[/tex]
Option E and option F are the roots of the polynomial.
The values of x are [tex]x=\frac{3 - \sqrt{-11}}{2} \ \text{and} \ x=\frac{3 + \sqrt{-11}}{2}[/tex].