Answer:
[tex]\Delta s = 0.8708\,\frac{kJ}{kg\cdot K}[/tex]
Explanation:
The adiabatic throttling process is modelled after the First Law of Thermodynamics:
[tex]m\cdot (h_{in} - h_{out}) = 0[/tex]
[tex]h_{in} = h_{out}[/tex]
Properties of water at inlet and outlet are obtained from steam tables:
State 1 - Inlet (Liquid-Vapor Mixture)
[tex]P = 1500\,kPa[/tex]
[tex]T = 198.29\,^{\textdegree}C[/tex]
[tex]h = 2726.9\,\frac{kJ}{kg}[/tex]
[tex]s = 6.3068\,\frac{kJ}{kg\cdot K}[/tex]
[tex]x = 0.967[/tex]
State 2 - Outlet (Superheated Vapor)
[tex]P = 200\,kPa[/tex]
[tex]T = 130\,^{\textdegree}C[/tex]
[tex]h = 2726.9\,\frac{kJ}{kg}[/tex]
[tex]s = 7.1776\,\frac{kJ}{kg\cdot K}[/tex]
The change of entropy of the steam is derived of the Second Law of Thermodynamics:
[tex]\Delta s = 7.1776\,\frac{kJ}{kg\cdot K} - 6.3068\, \frac{kJ}{kg\cdot K}[/tex]
[tex]\Delta s = 0.8708\,\frac{kJ}{kg\cdot K}[/tex]