Answer:
A = [tex]\frac{ x+\sqrt{x^2+4b}}{2}, \frac{ x-\sqrt{x^2+4b}}{2}[/tex]
Step-by-step explanation:
First manipulate the equation as such,
[tex]x=A-\frac{B}{A}[/tex]
[tex]0=A - \frac{B}{A} - X[/tex]
[tex]0=A^2 -AX - B[/tex]
Then use the quadratic formula,
[tex]x= \frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex] when, [tex]0 = ax^2 +bx +c[/tex].
Which gives [tex]A= \frac{ x+\sqrt{x^2+4b}}{2}, \frac{ x-\sqrt{x^2+4b}}{2}[/tex].