Respuesta :

Answer:

[tex]\displaystyle y'=3\frac{1+\frac{x}{\sqrt{1+x^2}}}{2+2x^2+2x\sqrt{1+x^2}}[/tex]

Step-by-step explanation:

The Derivative of a Function

The derivative of f, also known as the instantaneous rate of change, or the slope of the tangent line to the graph of f, can be computed by the definition formula

[tex]\displaystyle f'(x)=\lim\limits_{\Delta x \rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}[/tex]

There are tables where the derivative of all known functions are provided for an easy calculation of specific functions.

The derivative of the inverse tangent is given as

[tex]\displaystyle (tan^{-1}u)'=\frac{u'}{1+u^2}[/tex]

Where u is a function of x as provided:

[tex]y=3tan^{-1}(x+\sqrt{1+x^2})[/tex]

If we set

[tex]u=(x+\sqrt{1+x^2})[/tex]

Then

[tex]\displaystyle u'=1+\frac{2x}{2\sqrt{1+x^2}}[/tex]

[tex]\displaystyle u'=1+\frac{x}{\sqrt{1+x^2}}[/tex]

Taking the derivative of y

[tex]y'=3[tan^{-1}(x+\sqrt{1+x^2})]'[/tex]

Using the change of variables

[tex]\displaystyle y'=3[tan^{-1}u]'=3\frac{u'}{1+u^2}[/tex]

[tex]\displaystyle y'=3\frac{u'}{1+u^2}=3\frac{1+\frac{x}{\sqrt{1+x^2}}}{1+(x+\sqrt{1+x^2})^2}[/tex]

Operating

[tex]\displaystyle y'=3\frac{1+\frac{x}{\sqrt{1+x^2}}}{1+x^2+2x\sqrt{1+x^2}+1+x^2}[/tex]

[tex]\boxed{\displaystyle y'=3\frac{1+\frac{x}{\sqrt{1+x^2}}}{2+2x^2+2x\sqrt{1+x^2}}}[/tex]

ACCESS MORE
EDU ACCESS