Let f f and g g be functions such that f(0)=7,g(0)=5, f(0)=7,g(0)=5, f ′ (0)=8, g ′ (0)=6. f′(0)=8,g′(0)=6. Find h ′ (0) h′(0) for the function h(x)=g(x)f(x) h(x)=g(x)f(x) . h ′ (0) h′(0) =

Relax

Respuesta :

Answer:

h'(0) = 82

Step-by-step explanation:

h(x) = g(x)f(x), meaning

h'(x) = g'(x)f(x) + f'(x)g(x)

h'(0) = g'(0)f(0) + f'(0)g(0)

h'(0) = (6)(7) + (8)(5) = 42 + 40 = 82