Answer:
C. 0.27 amperes.
Step-by-step explanation:
[tex]I_1[/tex] is the current through the ammeter, and [tex]I_2[/tex] is the current through the bigger loop.
Going around the circuit loop gives
[tex]V -IR-I_1R-IR =0[/tex]
[tex]V -2IR-I_1R =0[/tex]
[tex](1). \: \: V =2IR+I_1R[/tex]
and going around the second loop gives
[tex]V- IR-I_2R-I_2R-I_2R-IR= 0[/tex]
[tex]V- 2IR-3I_2R= 0[/tex].
[tex](2). \: \; V= 2IR+3I_2R[/tex]
Since
[tex]I = I_1+I_2[/tex],
[tex]I_2 = I-I_1[/tex]
putting that into equation (2) we get:
[tex](3). \: \; V=2IR+3(I-I_1)R= 0[/tex]
Combining equations (1) and (3) we get:
[tex]2IR+3(I-I_1)R=2IR+I_1R[/tex]
[tex]2IR+3IR-3I_1R=2IR+I_1R[/tex]
[tex]3IR = 4I_1R[/tex]
[tex]\boxed{(4).\: \: I_1 = \dfrac{3}{4}I }[/tex]
putting this into equation (1) we get:
[tex]V = \dfrac{11}{4} IR[/tex]
putting in [tex]V= 50, R =50\Omega[/tex] and we solve for [tex]I[/tex] to get:
[tex]I = \dfrac{4}{11} amps[/tex]
Equation (4) now gives
[tex]I_1 = \dfrac{3}{11}amps = 0.27amps[/tex]
which is the current the ammeter will measure and it is give by choice C.