Respuesta :
Answer:
[tex]y(x)=sin(2x)+2cos(2x)[/tex]
Step-by-step explanation:
[tex]y''+4y=0[/tex]
This is a homogeneous linear equation. So, assume a solution will be proportional to:
[tex]e^{\lambda x} \\\\for\hspace{3}some\hspace{3}constant\hspace{3}\lambda[/tex]
Now, substitute [tex]y(x)=e^{\lambda x}[/tex] into the differential equation:
[tex]\frac{d^2}{dx^2} (e^{\lambda x} ) +4e^{\lambda x} =0[/tex]
Using the characteristic equation:
[tex]\lambda ^2 e^{\lambda x} + 4e^{\lambda x} =0[/tex]
Factor out [tex]e^{\lambda x}[/tex]
[tex]e^{\lambda x}(\lambda ^2 +4) =0[/tex]
Where:
[tex]e^{\lambda x} \neq 0\\\\for\hspace{3}any\hspace{3}\lambda[/tex]
Therefore the zeros must come from the polynomial:
[tex]\lambda^2+4 =0[/tex]
Solving for [tex]\lambda[/tex]:
[tex]\lambda =\pm2i[/tex]
These roots give the next solutions:
[tex]y_1(x)=c_1 e^{2ix} \\\\and\\\\y_2(x)=c_2 e^{-2ix}[/tex]
Where [tex]c_1[/tex] and [tex]c_2[/tex] are arbitrary constants. Now, the general solution is the sum of the previous solutions:
[tex]y(x)=c_1 e^{2ix} +c_2 e^{-2ix}[/tex]
Using Euler's identity:
[tex]e^{\alpha +i\beta} =e^{\alpha} cos(\beta)+ie^{\alpha} sin(\beta)[/tex]
[tex]y(x)=c_1 (cos(2x)+isin(2x))+c_2(cos(2x)-isin(2x))\\\\Regroup\\\\y(x)=(c_1+c_2)cos(2x) +i(c_1-c_2)sin(2x)\\[/tex]
Redefine:
[tex]i(c_1-c_2)=c_1\\\\c_1+c_2=c_2[/tex]
Since these are arbitrary constants
[tex]y(x)=c_1sin(2x)+c_2cos(2x)[/tex]
Now, let's find its derivative in order to find [tex]c_1[/tex] and [tex]c_2[/tex]
[tex]y'(x)=2c_1 cos(2x)-2c_2sin(2x)[/tex]
Evaluating [tex]y(0)=2[/tex] :
[tex]y(0)=2=c_1sin(0)+c_2cos(0)\\\\2=c_2[/tex]
Evaluating [tex]y'(0)=2[/tex] :
[tex]y'(0)=2=2c_1cos(0)-2c_2sin(0)\\\\2=2c_1\\\\c_1=1[/tex]
Finally, the solution is given by:
[tex]y(x)=sin(2x)+2cos(2x)[/tex]