the rational expression [tex]\frac{x^2 - 10x +21}{ x^2-6x -7}[/tex] to its lowest term is [tex]\frac{x-3}{ x+1}[/tex] .
Step-by-step explanation:
Here we need to reduce the rational expression x^2 - 10x + 21/ x^2 -6x -7 to its lowest term . Let's find out:
[tex]\frac{x^2 - 10x +21}{ x^2-6x -7}[/tex]
⇒ [tex]\frac{x^2 - 7x-3x +21}{ x^2-7x+x -7}[/tex]
⇒ [tex]\frac{x(x - 7)-3x +7(3)}{ x(x^-7)+x -7}[/tex]
⇒ [tex]\frac{x(x - 7)-3(x -7)}{ x(x^-7)+1(x -7)}[/tex]
⇒ [tex]\frac{(x-3)(x - 7)}{ (x+1)(x^-7)}[/tex]
⇒ [tex]\frac{(x-3}{ (x+1)}[/tex]
⇒ [tex]\frac{x-3}{ x+1}[/tex]
Therefore , the rational expression [tex]\frac{x^2 - 10x +21}{ x^2-6x -7}[/tex] to its lowest term is [tex]\frac{x-3}{ x+1}[/tex] .