Respuesta :

Answer:

[tex]\mathrm{Factor}\:x^2+4xy-21y^2:\quad \left(x-3y\right)\left(x+7y\right)[/tex]

Step-by-step explanation:

Given the expression

[tex]x^2+4xy-21y^2[/tex]

We can write the expression by breaking it into the groups such as:

[tex]=\left(x^2-3xy\right)+\left(7xy-21y^2\right)[/tex]

[tex]\mathrm{Factor\:out\:}x\mathrm{\:from\:}x^2-3xy\mathrm{:\quad }x\left(x-3y\right)[/tex]

[tex]\mathrm{Factor\:out\:}7y\mathrm{\:from\:}7xy-21y^2\mathrm{:\quad }7y\left(x-3y\right)[/tex]

[tex]=x\left(x-3y\right)+7y\left(x-3y\right)[/tex]

[tex]\mathrm{Factor\:out\:common\:term\:}x-3y[/tex]

[tex]=\left(x-3y\right)\left(x+7y\right)[/tex]

Therefore,

[tex]\mathrm{Factor}\:x^2+4xy-21y^2:\quad \left(x-3y\right)\left(x+7y\right)[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico