Answer:
[tex]\mathrm{Factor}\:x^2+4xy-21y^2:\quad \left(x-3y\right)\left(x+7y\right)[/tex]
Step-by-step explanation:
Given the expression
[tex]x^2+4xy-21y^2[/tex]
We can write the expression by breaking it into the groups such as:
[tex]=\left(x^2-3xy\right)+\left(7xy-21y^2\right)[/tex]
[tex]\mathrm{Factor\:out\:}x\mathrm{\:from\:}x^2-3xy\mathrm{:\quad }x\left(x-3y\right)[/tex]
[tex]\mathrm{Factor\:out\:}7y\mathrm{\:from\:}7xy-21y^2\mathrm{:\quad }7y\left(x-3y\right)[/tex]
[tex]=x\left(x-3y\right)+7y\left(x-3y\right)[/tex]
[tex]\mathrm{Factor\:out\:common\:term\:}x-3y[/tex]
[tex]=\left(x-3y\right)\left(x+7y\right)[/tex]
Therefore,
[tex]\mathrm{Factor}\:x^2+4xy-21y^2:\quad \left(x-3y\right)\left(x+7y\right)[/tex]