I’m the circle be, CE equals 13.5. Find BD. Round to the nearest hundredth

Given:
CE = 13.5
AB = 8
To find:
The length of BD.
Solution:
AB and BF are radius of the circle.
BF = 8
Radius BF is perpendicular to the chord CE.
Therefore it BF bisects the chord.
CD = [tex]\frac{1}{2} (13.5)=6.75[/tex]
Draw radius BC to complete right triangle BCD.
BC = 8 units
Using Pythagorean Theorem:
[tex]B D^{2}+C D^{2}=B C^{2}[/tex]
[tex]B D^{2}+6.75^{2}=8^{2}[/tex]
[tex]B D^{2}+45.5625=64[/tex]
Subtract 45.5625 from both sides.
[tex]B D^{2}=18.4375[/tex]
Taking square root on both sides, we get
[tex]B D \approx 4.29[/tex]
The length of BD is 4.29 units.