Respuesta :

Given:

CE = 13.5

AB = 8

To find:

The length of BD.

Solution:

AB and BF are radius of the circle.

BF = 8

Radius BF is perpendicular to the chord CE.

Therefore it BF bisects the chord.

CD = [tex]\frac{1}{2} (13.5)=6.75[/tex]

Draw radius BC to complete right triangle BCD.

BC = 8 units

Using Pythagorean Theorem:

[tex]B D^{2}+C D^{2}=B C^{2}[/tex]

[tex]B D^{2}+6.75^{2}=8^{2}[/tex]

[tex]B D^{2}+45.5625=64[/tex]

Subtract 45.5625 from both sides.

[tex]B D^{2}=18.4375[/tex]

Taking square root on both sides, we get

[tex]B D \approx 4.29[/tex]

The length of BD is 4.29 units.

ACCESS MORE
EDU ACCESS
Universidad de Mexico