Respuesta :
Answer:
[tex]-\sqrt{3}[/tex]
Step-by-step explanation:
From Trigonometric Identity
[tex]Tan (A+B)=\frac{tan A + tan B}{I-tan A\cdot tan B}[/tex]
Therefore comparing [tex]\frac{tan 77 + tan 43}{I-tan 77\cdot tan 43}[/tex] with the above:
A=77, B=43
[tex]\frac{tan 77 + tan 43}{I-tan 77\cdot tan 43}=Tan (77+43)[/tex]
=Tan 120
Tan is Negative in the Second Quadrant
Tan 120 =[tex]-\sqrt{3}[/tex]
Answer:
Step-by-step explanation:
Remember from Trig. identity:
Tan(a + b) = (tan a + tan b)/1 - tana × tan b
From the above,
(tan 77 + tan 43)/1 - tan 77 × tan 43
Comparing Both equations on the LHS,
a = 77
b = 43
Therefore, on the right hand side;
Tan (a + b) = tan (77 + 43)
= tan 120
Tan θ = sin θ/cos θ
Sin 120 = (root3)/2
Cos 120 = -1/2
Therefore, tan 120 = (root3)/2 × -2/1
= -(root3)